If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5q^2-4q-7=0
a = 5; b = -4; c = -7;
Δ = b2-4ac
Δ = -42-4·5·(-7)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{39}}{2*5}=\frac{4-2\sqrt{39}}{10} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{39}}{2*5}=\frac{4+2\sqrt{39}}{10} $
| 16x-(6-9x)=30x-8x | | 12+e=-14 | | 2(b+4)(b-5)=0 | | 3(9x-7x+23)=x(2+2)-40 | | f+1=-13 | | 2x-(2x-3x-1/8)=2/3(x=2/6)-1/4 | | m^2-16m+20=0 | | 8/25xx=-7/15 | | 9s+11/2=10 | | -2(-4x)+32=-3(-x+4) | | 6(2m-3)-3m=2-18+m | | X=-3x=1 | | Y=6×-14y=-8× | | 2(z+3)-z=-2-4(z+2) | | 9(-x+4)-10=7+10 | | X2+22x=0 | | 3(x+2)-(5x+2)=3(2x+8) | | x+8/25=-7/15 | | h/7=+8=11 | | 5(2x+8)=15x-3(-7) | | 6x-2x-16=52 | | 7-3x÷10+7x=10/3 | | 4y-3(2-8)=4(-2y)+50 | | 4(x+1)+5=-11 | | x+8/25=7/15 | | 2x-5(-x-1)=-37 | | -4x+172=172-4x | | 19g+4g-20g-3g+g=15 | | y 3+y−2 8=6y−1 12 | | 4x-9=105 | | 6a-5a-a+a=16 | | p3+8=20 |